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SUMMARY

This paper is devoted to the simulation of inertial con�nement fusion for target design. An arbitrary
Lagrangian Eulerian formulation based on discontinuous Galerkin �nite element methods is proposed.
It is totally di�erent from Wilkins’ scheme used in traditional ICF codes. The objective here is to test
the robustness of the method on non-uniform moving grids. The emphasis is put on the preservation
of the spherical symmetry. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This work is devoted to the development of codes to simulate inertial con�nement fusion
(ICF) experiments. Among the main di�culties in such simulations is the large variety
of equations to be solved (the equations of compressible hydrodynamics, heat conduction,
radiation transport, laser energy deposition) and the high compression ratios to be treated
(��=�� 1000). Moreover, multiple real materials with complex equations of state are present.
In developing numerical schemes, we look for the robust methods and their ability to preserve
the spherical symmetry of �ows.
ICF implosion codes have traditionally used a two-dimensional, cylindrically symmetric,

�nite volume, Lagrangian hydrodynamics algorithm developed in the 1960s at LLNL [1].
Vertices move with the �uid to keep the element mass constant in time. The density and
pressure are assumed to be uniform within each element, while the velocity is assumed to
be a bilinear function of the vertex values. An arti�cial viscous force is included to broaden
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shocks, and a numerical processing—typically a velocity correction—is added to damp Hour-
glass motions.
This kind of approach presents several defects. First, it is really di�cult to derive convenient

viscosity terms: most of the arti�cial viscous forces are not derived from a proper tensor stress,
and the resulting methods exhibit bad performances on meshes with large aspect ratio. Next,
there is intrinsically a problem in using a staggered grid concerning the total energy, which
is the sum of the internal energy located in the cell centres and the kinetic energy centred at
the nodes. Finally, when most hydrodynamic calculations give rise to premature breakdown of
the grid topology, the Lagrangian phase is followed by a rezoning step. A remapping phase
is then required to interpolate the solution onto the improved mesh. There are di�cult issues
concerning the derivation of remapping algorithms that are second-order accurate, conservative
and sign preserving.
This work is an attempt to propose another numerical scheme for hydrodynamics. An

arbitrary Lagrangian Eulerian (ALE) formulation will be considered to relax the mesh in
the presence of excessive grid distortions. The spatial discretization is based on the
discontinuous Galerkin (DG) method. Its good performances are now well established for
an Eulerian description of �uid motion [2, 3] and recent research on moving grids is very
encouraging [4].
The �rst part of the paper presents the ALE formulation of hydrodynamics. The second

part deals with spatial discretization. The emphasis is put on the veri�cation of the geometric
conservation law (GCL), which has been proven to be very important for time accuracy and
stability properties [5]. The last part is devoted to numerical simulations.

2. THE ALE HYDRODYNAMICS EQUATIONS

2.1. Notations

Let �0 ⊂R2 be a reference con�guration (typically the domain position at the beginning
of the simulation), and �t ∈R2 an instantaneous con�guration, with t ∈ [0; T ]. A point in
�0 (respectively �t) is denoted by x0 = (x0i )i=1;2 (respectively, x=(xi)i=1;2). At each time
t ∈ [0; T ], a point x0 ∈�0 is associated to a point x= x(x0; t)∈�t . Let Jt = @x=@x0 be the
Jacobian of the map. Traditionally, x0 is called the ALE co-ordinate and x the spatial or
Eulerian co-ordinate. The time derivative in the ALE frame written in the spatial co-ordinate
is Df=Dt= @f=@t + !g·∇xf, where !g(x; t)=Dx=Dt is the displacement velocity of the
domain.

2.2. Governing equations

The ALE formulation of two-dimensional compressible �uid can be written as

D
Dt
(JtW ) + Jt∇x · (F(W )−!gW )=0 (1)
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with initial and boundary conditions. The vector of conservative variables W ∈R4, and the
�ux function F =t(F1(W ); F2(W )); Fi(W )∈R4 are de�ned as follows:

W =




�

�u1

�u2

�E



; F1 =




�u1

�u21 + P

�u1u2

u1(�E + P)



; F2 =




�u2

�u1u2

�u22 + P

u2(�E + P)




(2)

In (2), � is the mass density, �ui the momentum density, �E the total energy density and P
the pressure. The total energy per unit mass E is linked to the internal energy per unit mass
I by the relation E= I + 1

2 uiui. To close the system, an equation of state gives I = I(�; P).

3. A DISCONTINUOUS FINITE ELEMENT APPROACH

3.1. Preliminaries

The 2D problem domain is meshed into an arbitrary and unstructured set of non-overlapping
cells (triangular and=or quadrilateral elements). Within each element E, the solution Wh(x; t)|E
is approximated by a polynomial of degree 1. There is no requirement of continuity across
edges between elements. The mesh velocity is a linear or bilinear function of the vertex values
(according to the element shape).

3.2. The semi-discretization in space

Equation (1) are multiplied by a test function ’h and integrated on each element E(0) of
the initial con�guration. Integrals are then transformed into the arbitrarily moving reference
frame. The volume integral is integrated by parts twice to get

d
dt

∫
E(t)
’hWh dv+

∫
E(t)
’h∇x · (F(Wh)−!gWh) dv

+
∫
@E(t)

�(WhE;WhE′ ; !g; n)’h d� −
∫
@E(t)

(F(Wh)−!gWh) · n’h d�=0 (3)

Upwinding is achieved by a numerical �ux �(U;V;!g; n) which results from the resolution
of a local Riemann problem in the direction that is normal to the interfaces. It is conservative
and consistent with the �ux: �(U;U;!g; n)= (F(U ) − !gU ) · n. In (3), E′ is the element
sharing an edge with E. This is not the most commonly used approach but it makes the
obtention of the GCL trivial. Finally, it is important to notice that a limiting procedure is
necessary to impose a local maximum principle.

3.3. The geometric conservation law

The GCL states that the computation of the geometric parameters must be performed in such
a way that, independent of the mesh motion, the resulting numerical scheme preserves the
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state of a uniform �ow. A misrepresentation of the convective �uxes due to an inaccurate
calculation of geometrical quantities can result in numerical instabilities and oscillations [6].
Furthermore, real signi�cance of those conditions in terms of scheme stability properties and
time accuracy have been proposed by several authors [5].
We substitute a constant function W into the discrete system (3) and we look for

conditions to be satis�ed such that a constant �eld is an exact solution of the numerical
scheme independent of the mesh velocity. We get after trivial manipulations

d
dt

∫
E(t)
’k dv=

∫
E(t)
’k(∇x ·!g) dv (4)

It is supposed that the spatial volume integrals are computed exactly by using appropriate
quadrature formulae. Consequently, the GCL is satis�ed if the time integration of the term
involving the mesh velocity divergence is exact.
Following Reference [7], we consider E(t n) as the reference con�guration

Atn :
E(t) −→ E(t n)
x �−→ y (5)

We have ’̂(y)=’◦Atn(x), and we denote by Jcof the co-factor matrix of the ALE mapping.
We get ∫

E(t)
’k(∇x ·!g) dv=

∫
E(t n)

’̂k(y)(Jcof∇y) · !̂g dv

If the domain displacement is taken to be a piecewise constant polynomial in time, the
co-factor matrix would be a polynomial in time [t n; t n+1] of degree 1. Consequently, the GCL
condition is satis�ed once a one-point integration scheme of exactness one is used.

4. NUMERICAL EXPERIMENTS

Unities are expressed in the CGS system. All the numerical results have been obtained with
a second-order scheme. The limiting procedure is based on the minmod function. It is an
extension of the method of Cockburn and Shu [2] developed for triangles to the case of
unstructured meshes of quadrilateral elements. Our objective was to test the DG scheme
on an almost Lagrangian formulation. The mesh velocity has been computed from the �uid
velocity by a simple average procedure. This point needs further analysis to limit as much as
possible the mass �ux at element interfaces, but it was adequate for the present study.

4.1. A modi�ed Saltzman problem

The problem consists in solving a one-dimensional problem on a non-uniform two-dimensional
mesh [8]. The initial mesh is composed by 100×10 cells. To damage the mesh aspect ra-
tio, the computational domain is taken as �= [0; 1]×[0; 1] in place of [0; 1]×[0; 0:1] as most
authors do. Initially the gas is at rest with density 1 and zero pressure. The piston at the
left moves with speed 108. Figure 1 shows the density pro�les at time 6×e−09 s of the solu-
tions computed with the proposed scheme and the Wilkins’ scheme. The DG scheme almost
preserves the unidimensional symmetry. The solution obtained with the scheme of Wilkins
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Figure 1. Saltzman problem. Mesh and density pro�les at time 9:7× e−09 s. Exact solution,
solution with the DG scheme and solution with the scheme of Wilkins.

could be improved by using a velocity correction to suppress Hourglass-type motions. But the
objective here was to test the presence (or not) of non-physical modes in the DG approximate
solution. Results are very good (see a portion of the mesh at time after one re�ection on the
right-hand wall).

4.2. Compression of a sphere

We study the deformation of a sphere, composed of two materials, submitted to a force on
its outer boundary. We have considered a 10×100 polar grid with initially equal radial and
angular interval. Initially, the radius of the outer boundary is 1. The pressure is 1:2515518
× 10−2. The density of the internal material (06r60:5) is 1 and the density of the external
material (0:56r61) is 4. The compression is driven by imposing a pressure of 10 on the
external boundary. The solution at time 0:3 is represented in Figure 2. The symmetry of the
problem is well preserved.

4.3. The Noh problem

In this problem, we study a shock re�ecting from an axis in a convergent geometry [9]. It
is computed in a quarter plane with re�ective boundary conditions on both axes. The initial
grid is uniform and is 50×50. Initially, the density is 1, the pressure is 0 and the velocity
is directed towards the centre with magnitude 1. We have represented a mesh portion at the
�nal time and the density pro�les along the two axes (see Figure 3). Solutions have density
pro�les with a large disparity from the analytical result because the mesh convergency is not
reached, but the spherical symmetry of the problem is well preserved. The phenomenon of
‘wall heating’ [9] near the axis is common to any scheme based on Lagrangian formulation.
The mesh after the shock re�ection is particularly good.
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Figure 2. Compression of a sphere. Isolines for density at time 0:25 s.
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Figure 3. The Noh problem. Portion of the mesh and density pro�les.

5. CONCLUSIONS

This preliminary study is very encouraging for the development of discontinuous �nite element
schemes for ICF codes. We have obtained the same conclusions as Kershaw et al., i.e. this
is a very interesting alternative to simulate �ows with very high aspect ratios in converging
geometries. The on-going work is devoted to the improvement of the limiting procedure which
is not fully satisfactory on spherical con�gurations meshed by quadrilaterals.
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